Parameter estimation based on stacked regression and evolutionary algorithms
نویسندگان
چکیده
منابع مشابه
Estimation of LPC coefficients using Evolutionary Algorithms
The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the importance of their accurate computation. This paper is concerned with computing LPC coefficients using evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Dif-ferential Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV...
متن کاملestimation of lpc coefficients using evolutionary algorithms
the vast use of linear prediction coefficients (lpc) in speech processing systems has intensified the importance of their accurate computation. this paper is concerned with computing lpc coefficients using evolutionary algorithms: genetic algorithm (ga), particle swarm optimization (pso), dif-ferential evolution (de) and particle swarm optimization with differentially perturbed velocity (pso-dv...
متن کاملA NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION
Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...
متن کاملParameter Control in Evolutionary Algorithms
The issue of controlling values of various parameters of an evolutionary algorithm is one of the most important and promising areas of research in evolutionary computation: It has a potential of adjusting the algorithm to the problem while solving the problem. In this paper we: 1) revise the terminology, which is unclear and confusing, thereby providing a classification of such control mechanis...
متن کاملPMU Placement Methods in Power Systems based on Evolutionary Algorithms and GPS Receiver
In this paper, optimal placement of Phasor Measurement Unit (PMU) using Global Positioning System (GPS) is discussed. Ant Colony Optimization (ACO), Simulated Annealing (SA), Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are used for this problem. Pheromone evaporation coefficient and the probability of moving from state x to state y by ant are introduced into the ACO. The modifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEE Proceedings - Control Theory and Applications
سال: 1999
ISSN: 1350-2379,1359-7035
DOI: 10.1049/ip-cta:19990505